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Introduction 
The nanostructural topology of disordered graphene networks, otherwise known as isotropic or 
non-graphitising carbons, is an unsolved problem in carbon science. Rosalind Franklin suggested 
the first model whereby 3D connectivity between misaligned small graphitic domains was allowed 
for by crosslinks. Using electron micrographs, these crosslinks were found to be curved, leading 
others to develop ribbon-like models characterized by Gauss flat topologies. The discovery of 
fullerenes and the imaging of polygonalized structures in high-temperature carbons suggested a 
fullerene-like nanostructure characterized by Gauss positive curvature. Positive curvature, 
however, does not allow for connectivity in three dimensions and so nanostructures characterised 
by Gauss negative curvature were also suggested – Schwarzite-like nanostructures. While these 
curved nanoforms are purely sp2, another topological element that has been proposed is Y/T-type 
junctions of sp3 bonded carbon that allow for the termination of the graphene edge onto the face 
of another graphene fragment. While this could provide the porosity seen in some nanoporous 
carbons, the proportion of sp3 carbon atoms would be too great. Evidence for all of these nanoforms 
has been found, but it is not obvious how these nanostructures are combined into a coherent model.  
In this work, we approach the problem using a new mesh-based topological analysis of carbon 
nanostructural models generated using reactive molecular dynamics.  
 
Methods 
Periodic nanocarbon models were previously prepared using annealed molecular dynamics and 
provide close agreement to structural and electronic experimental measures.1 A range of densities 
was chosen (0.5, 0.7, 0.9, 1.1 and 1.5 g/cc) that corresponds to the range over which the graphitic 
crystallites were found to self-assemble. For topological analysis we began by determining the 
positions of all rings. A triangular mesh was then constructed from the atoms within each ring and 
the vertex at the centre of each ring. This produced a unique decomposition of the carbon network 
into a discrete mesh whose topology could be probed. We made use of the angular defect about 
each vertex to determine the local and global curvature of each network.  
 
Results and Discussion 
Hexagonal arrangements of carbons atoms were found to dominate in all of the nanocarbon 
models. Within these networks were also a small proportion of non-hexagonal rings that arranged 
themselves into line dislocations (grain boundaries). Unlike planar polycrystalline graphene, these 
dislocations did not all form closed loops. Where these line dislocations ended without forming a 



 
 

loop or where isolated non-hexagonal rings were present, non-zero local Gauss curvature was 
integrated. We found that counting non-hexagonal rings was unable to probe the global topology 
due to the networks being not purely sp2 carbon. Instead, we used the angular defect. We found 
for all of the isotropic nanocarbon models an excess of negative angular defects indicating a net-
negative Gauss curvature, which we propose is the characterising feature of isotropic carbons. 
Figure 1 shows schematically the proposed net-negative, fulleroid-like nanostructure.  
The non-sp2 carbon atoms were then considered. At low densities we find Y/T-type and free edges 
dominate. With increasing density we also find that screw dislocations become dominant allowing 
for a winding up of the carbon sheets into a layered solid. This gives rise to the ribbons observed 
in glassy carbons and the cross-hatched regions, leading us to propose the stacked, screwed, net-
negative fulleroid-like nanostructure for high density isotropic carbons. These results provide 
insights into porous carbons such as the integration of flexoelectricity,2 glassy carbon ribbons and 
the graphitisability of carbon materials.  
         

 
 
Figure 1. Schematic of the carbon nanoforms present in the models developed for disordered carbon. 
 
Conclusions 
Topological analysis of nanocarbon models prepared previously via reactive molecular dynamics 
reveals how different topological elements are integrated into carbon materials.  
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