Attaining Sustainability? The (Unintended) Consequences of Venture Capital

Investments on Firms’ Environmental Performance

Kenneth G. Huang?, Michelle Xiaomin Fan!, Jiaxing You?

Using the context of the energy-intensive industry in China, we find: Strengthening of formal institutions for VC investment as a result of
the top-down, major VC policy reform significantly increases the (air and water) pollution emissions intensity of target firms;
Nevertheless, VC firms’ greater experiences in energy-intensive industries and local governments’ more robust environmental
protection measures can mitigate such pollution; Thus, It Is possible to benefit from improved VC investment institutions AND mitigate
its (unintended) adverse impacts on environment under appropriate conditions (thus attaining sustainability).

“* Emerging economy of China has experienced rapid economic growth fueled by increasing energy
consumption and (traditional) industrial processes but faces severe air and water pollution with
major health and social implications

¢ As major consumers of energy and emitters of pollutants, firms in “energy-intensive” industries face
challenges in satisfying the dual and (often) conflicting goals of improving profitability and reducing
pollution emissions, esp. in such economies where environmental issues are vital

** VC investments and their institutional environment have improved significantly in China, and they
can improve target firms’ performance and innovation, but we know little about the consequences
of VC policy/institutions on firms’ environmental impacts, esp. for energy-intensive firms

** Whether and to what extent a strengthening of formal institutions for
venture capital (VC) investments generate an (unintended) adverse
conseguence on the environment?

** How do the roles and attributes of the participating key stakeholders—
Investors and regulators—influence or mitigate such effects?
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“» Entrepreneurial Finance and Firm Environmental Performance (Ve fime experiences n
- Prior studies suggest VC plays an important role in shaping target firms’ operation, innovation, and eventual success e”eirngc}’l;!ltr?e”;ive
« Specifically, typical VC firms tend to adopt a shorter-term investment horizon and orientation, focusing on profitability and \_ Y,
growth from their target firms
« But firms’ environmental performance and sustainability often require a longer-term orientation and perspective taken by Strengthening of = (H2ab) 4
the VC investors formal institutions for + (H1ab) Focal firms’ pollution
. : : : : : : : VC investments due Y emission intensity
¢ Strengthening of formal institutions for VC investment in China to major VC policy (air and water)
* April 2009, Ministry of Finance (MF) and State Administration of Taxation (SAT) issued Circular of Issues on Implementing  \_ reform - - e ~
the Preference Policy of Business Income Tax (Tax [2009] No0.69)
« June 2009, China Securities Regulatory Commission (CSRC) restarted granting IPOs 4 | N
« Oct. 2009, CSRC announced and established the Growth Enterprises Market (GEM) in the stock exchange enbﬁgﬁ:ng;:gnprpoetggon
« Local governments followed to establish favorable policies . measures )

* Focus on VC Institutions change: Difference-in-differences (DID)

estimation

« Use plausibly exogenous, major top-down VC policy reform announced and implemented in 2009
In China; Treatment Group: Firms in energy-intensive industries that VC firms tend to invest in
“VC-active” industries; Control Group: Firms in energy-intensive industries typically not (or
minimally) affected by VC firms’ investment “VC-inactive” industries

** Propensity score matching (PSM)
* Firm-level attributes on all the years before the policy reform: age, size, leverage, tangibility, ROA,
R&D expenditure, and SOE
< Data and sample

« Pollution Data: The Environmental Survey and Reporting (ESR); Financial Data: Annual Tax
Survey (ATS); VC Data: CVSource

 Final Sample: 24,798 firms (2004-2014) after matching
*» Dependent variables

« Define the intensity of pollution emissions in the air, SO2 intensity, and in the water, COD intensity
(kg/1,000 CNY), as the total SO2 emission and COD emission respectively scaled by the
actual output adjusted for inflation, calculated based on the constant 2004 prices using CPI

** Independent variables

* Post-policy: equals one if a focal firm belongs to an industry that VC firms actively invest in (i.e.,
treatment group) and during the VC policy reform year 2009 or later, and equals zero otherwise.
For a focal firm in the control group, post-policy is always defined as zero

+¢* Dual roles of VC firms

 We find support that VC investments enhance economic performance of
target firms, including their profitability, growth and innovation

*» Extend prior literature on entrepreneurial finance and
environmental sustainability by linking It to institutional
theory

« Decision-making by the focal firm depends on the participation and
Intervention of key stakeholders such as investors and regulatory agencies
as each exerts its influence and the institutional regime in which the focal
firm and these stakeholders are embedded in

« Among the first study to investigate how the strengthening of institutions for
VC Investment could shape the target focal firms’ (environmental)
strategies and performance, and how the roles and salient attributes of
these key stakeholders could jointly influence the focal firms’ performance

* We provide new evidence on the “dark side” of VC investments institutions
e.g., (unintended) adverse consequence on environment as VC investors
and their target firms prioritize economic returns over social welfare and

externalize adverse outcomes such as environmental pollution, especially

Estimated Temporal Impact of VC Policy Reform on Pollution
Emission Intensity
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In emerging economies with weak regulatory oversight and enforcement

* Nevertheless, under the appropriate conditions, it is possible to reap
0s | economic return and mitigate the associated perverse outcomes through
1 the roles played by key participating stakeholders involved in the decision
process, such as investors and regulatory agencies
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Carbon Neutral Fuel Additives for Internal
Combustion Engine

Yichen ZONG*!?, Qiren ZHU'?, Yong Ren TANY23, Mutian MA%, Wenming YANG¢, Markus KRAFT?:3:>:6

Decarbonizing the transportation sector by transitioning to low or zero-carbon fuels is
essential for Singapore to achieve its 2050 net-zero emissions target and align with
International Maritime Organisation (IMO) decarbonization goals for shipping industry.
Researchers at CARES have been actively developing and testing carbon neutral fuel
additives that can significantly reduce carbon, gas, and particulate emissions from internal
combustion engines. Experiments have examined the impact of blending these additives
with diesel and jet fuel on both combustion characteristics and emission profiles.
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Decarbonising Maritime Transport (1)

[Li Chin Law’, Jessie R. Smith4, Epaminondas Mastorakos'-% , Stephen Evans’-4]

Introduction ™

Shipping decarbonisation can be achieved through alternative fuels. An analysis of the lifecycle of each option
reveals total emissions, energy and cost, and a future ship can be designed considering ship type, size,
weather conditions, voyage profiles, and fuel properties. Comparative studies among the various fuels enable
_ realistic comparisons and assist in making informed decisions. /
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LH2 = Liquefied Hydrogen, LCA = Lifecycle Assessment, LNG = Liquefied Natural Gas, LNH3 = Liquefied Ammonia, WTW = Well-to-\Wake (Lifecycle),
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Decarbonising Maritime Transport (2)

[Li Chin Law’, Savvas Gkantonas?, Jessie R. Smith?, Epaminondas Mastorakos™<]

The maritime industry is embracing a multi-fuel future. Unlocking their potential needs comprehending the
thermodynamics of each of the alternative marine fuels. This study delves deeply into the design of ships
powered by alternatives such as hydrogen, ammonia, methanol, biofuels, and onboard Carbon Capture and
Storage; by employing rigorous thermodynamic analysis to ensure the suitability of these fuels, enhance ship

safety and achieve an optimized ship design.
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*Abbreviation: n = Energy Efficiency, AA = Amine Absorption; CAR = Cargo Attainment Rate, CS = Carbon capture & storage, CS = Cryogenic CCS,
H2 = Hydrogen, ICE = Internal combustion engine, LNG = Liquefied Natural Gas, MEM = Membrane, MeOH = Methanol, NH3 = Ammonia, Pre-CCS =
Pre-combustion CCS, Post-CCS = Post-combustion CCS, PSA = Pressure Swing Adsorption, SMR = Steam methane reformer, WHR = Waste heat recovery,
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Engine emissions simulations with complex chemistry

B Harikrishnan!, Savvas Gkantonas?, Epaminondas Mastorakos*-

The shipping industry must decarbonise and shift to low-/zero-carbon fuels like ammonia or methanol
and lean-burn engines. Due to the low flammability of methanol and ammonia, dual-fuel combustion
concepts are considered by industry so that a highly-reactive fuel i1s used to ignite the fuel with low
reactivity. However, the conventional models used In industry for engine design cannot handle such
complexities, needing novel approaches that treat the fluild mechanics and the chemistry together.
Large-Eddy Simulations coupled with the Doubly Conditioned Moment Closure (LES-DCMC), an
advanced turbulent reacting flow modelling framework, were used In this project to explore the
physics of dual-fuel combustion and to develop better computational engine simulation tools.
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Dual-fuel jet or pilot ignition with new fuels such as ammonia, methanol
and hydrogen

Emission analysis for improving their compliance to the standards Kongsberg Maritime / Viridis Bulk Carriers

——— — e T T

Contact: em257@eng.cam.ac.uk, bh540@cam.ac.uk
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Ship-scale emissions dispersion: measurements

Molly J. Haugen'’, Savvas Gkantonas*, Ingrid El Helou!, Rohit Pathania', Adam M.
Boies!?, and Epaminondas Mastorakos?!?

The University of Cambridge made novel measurements on maritime particle emissions using an
unmanned aerial vehicle (UAV) and handheld particle sensors in Rafina, Greece building on previous
studies that considered complications of using UAVs for gaseous data collection in maritime
applications. This work adds particle data to the knowledge base of maritime emissions and gives
Insight to how using UAVSs for particle measurements can be improved and standardised.
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Ship-scale emissions dispersion: calculations

Ramesh Kollurut, Yangyang Liut, Savvas Gkantonas?, Epaminondas Mastorakos?:2

Shipping Emissions and Leak Dispersion Studies

Ship-scale emissions dispersion calculations and assessment for accidental ammonia leakage are critical aspects for todays and future shipping.
These calculations involve sophisticated modelling techniques to assess how emissions from ships disperse in the atmosphere, helping
authorities and ship operators mitigate their environmental impact. Additionally, understanding dispersion behaviour for ammonia leakage during
bunkering Is essential for guaranteeing personnel safety and safeguarding marine ecosystems. Numerical simulations play a pivotal role in these

assessments and are performed In this research with a combination of multi-dimensional Computational Fluid Dynamics and advanced turbulent

reacting flow theories that include the effects of mixing on the chemical evolutions of the emitted species.

Enhancing Pollution Modelling: CFD-ISRN Investigations of mixing Effects in Plumes
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_Ammonia Leaxage & Dispersion During Ship-to-ship Bunkering

Concen tration_NH3 (ppm)

PROCEDURE FOR BUNKERING
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ammonia bunkering operation. > Effective operational and mitigation control ammonia dispersion for exposed to a larger
measures for ammonia bunkering operations. vertical leakage. dangerous area. |
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[1] Gery et al., Journal of Geophysical Research, 94(D10):12925, 1989
[2] https://www.marineinsight.com/guidelines/bunkering-is-dangerous-procedure-for-bunkering-operation-on-a-ship/.
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UNDERSTANDING SOOT FORMATION OF
BIOFUELS FOR CLEAN COMBUSTION

Yong Ren TAN'23, Maurin SALAMANCA®#, Yichen ZONG?23, Jethro AKROYD?3, Markus KRAFT?:3:>5

Liquid fuels remained the prominent means to power the heavy transport
sector despite efforts of electrification. Hence, the usage of biofuels Is
promising in reducing the carbon footprint of the industry. This research aims
to understand the soot formation from the combustion of different biofuels
using different experimental technigues to have an environmental assessment
of the usage of different biofuels.

(Image source: Forbes, 2021)
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UNDERSTANDING SOOT NUCLEATION
FOR A GREENER FUTURE

Laura PASCAZIO?!, Jacob W. MARTIN' 2, Angiras MENON?¢, Kimberly BOWAL?, Gustavo L. CAZARES/,
Maria BOTERO?, Maurin SALAMANCA?, Jethro AKROYD%:3, Markus KRAFT?1:2:3:4.5

Soot contributes to climate change and causes an
estimated 7 million premature deaths per year. By
understanding the formation of soot we aim to eliminate
Its production In engines. Soot nucleation Is the least
understood of particle formation process.

This work presents the advances we have made on
modeling and understanding soot nucleation.

WHAT ALLOWS THE MOLECULAR SOOT PRECURSORS
TO CLUSTER INTO NANOPARTICLES IN THE FLAME?

Different pathways have

been hypothesised for soot

nucleation:

« PHYSICAL PATHWAY

« CHEMICAL PATHWAY
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Localised Tr-radicals are of particular interest.
* They have been detected In high-resolution
transmission electron microscopy (HRTEM).
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rim bonds where § .| & “5s
physical -
interactions are §
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