

From Emissions to Solutions

Epaminondas Mastorakos FREng em257@eng.cam.ac.uk

Input from:

Profs A. Romagnoli (NTU), P.S. Lee (NTU) Many post-docs (see posters) Acknowledgements to many industry partners

Outline

The problems we are trying to solve

A sampler of research results

Future steps

Primary energy sources -

Global primary energy consumption by source

Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as fossil fuels.

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldInData.org/energy • CC BY

The "big picture" of a part of C4T project

Emissions:

If you use fossil fuel, you produce **CO**₂.

If you use fossil fuel in a combustion process, you also produce NOx, Particulate Matter (PM), and other species. They may be toxic, carcinogenic, respiratory irritants etc.

Solutions:

Use less fuel per unit of output ("efficiency", "waste heat utilisation")

Burn well ("emit less per unit of heat released")

Burn zero-C fuel ("emit no CO_2 ") or C-neutral ("synthesize the hydrocarbon" or use "biofuel")

In parallel: Know what happens to the pollutant in the atmosphere

23/01/2024

LNG and LH₂ Cold utilization strategies

 The regasification of LNG or LH₂ is based on current LNG terminal technologies (e.g. Ambient or Forced Air Vaporizers, Open Rack Vaporizers using seawater)

 The high-grade cold energy released during regasification of LNG or LH₂ can instead be recovered for various utilization opportunities

Frost generated in AAV

ORV by Kobelco

A. Romagnoli, NTU

LNG and LH₂ Cold utilization strategies

- A Nitrogen- or Helium-based cryocogeneration system appears to have the adequate properties for LH₂ cold utilization
- Up to 10% of the liquefaction energy consumed prior to shipment is recovered and utilized
- A 1,000-tpd LH₂ terminal would lead to 15.7 MW of power and 50 MW of cooling

Development and assessment of large-scheme strategies, by considering:

1) multiple utilization opportunities, including **carbon capture**, **power generation**, **district cooling**, **gas production**;

2) synergy with a potential LH_2 import scenario.

Up to 2.8 Mtons/year of LCO₂ with LNG cold utilization and
4.1 Mtons/year of LCO₂ with both LNG and LH₂ cold utilization.

A. Romagnoli, NTU

Marine engine Computational Fluid Dynamics

Detailed CFD codes are used by industry to design cleaner engines. Imperative for new engine development for new fuels (biofuels, NH_3 , H_2 etc).

Trivedi et al, 2021: <u>https://doi.org/10.4271/2021-24-0041</u>

E. Mastorakos

AMBRIDGE

23/01/2024

Jet ignition of LNG engines (and NH₃ and CH₃OH)

New fuels need new combustion modes which need new combustion models

Harikrishnan et al, 2024: AIAA SciTech

23/01/2024

Biofuel structure, chemistry, and soot emission

Each biofuel is different; research developed chemical mechanisms and understanding on PM emissions from various biofuels

23/01/2024

Comprehensive evaluation of alternative maritime fuels

A comparison of alternative fuels for shipping in terms of lifecycle energy and cost

All good options consume a lot of energy, on a Well-To-Wake lifecycle basis.

On-line calculator: <u>https://lowcarbonship.com</u>

Law et al, 2021: https://doi.org/10.3390/en14248502

23/01/2024

Hydrogen ship : thermodynamics of boil-off (sloshing, effects of weather, tank properties etc)

MBRIDGE

23/01/2024

LH2 ship very sensitive to sloshing, causing high boil-off rates; significant extra energy needed to re-liquefy the evaporated hydrogen.

Smith et al, 2022: https://doi.org/10.3390/en15062046

Ammonia-fuelled ship model

NH₃ ship must include many new sub-systems – this means extra cost, weight, volume, cargo loss

Imhoff et al, 2021: https://doi.org/10.3390/en14217447

E. Mastorakos

CAMBRIDGE

23/01/2024

Containership with post-combustion on-board Carbon Capture and Storage, comparison with battery & LH2 ship

Comparison of Low Carbon Containership

On-board CCS seems a reasonable proposition; "the devil is in the detail" however

Law et al, 2023: <u>https://doi.org/10.1016/j.egyr.2023.02.035</u>

E. Mastorakos

CAMBRIDGE

23/01/2024

On-board partial LNG reforming (engine fed by LNG + H2), pre-combustion Carbon Capture and Storage

Round-trip efficiency for green electricity imports to SG through LH2 and NH3

Round-trip efficiency with LH2 and LNH3: not too attractive

Jessie Smith, PhD, Univ of Cambridge 2023: https://doi.org/10.17863/CAM.94654

Moving sources in atmospheric dispersion CFD ("Air Quality Modelling" AQM)

Model development to better include ship emissions

Pan et al 2021: https://doi.org/10.5194/gmd-14-4509-2021

E. Mastorakos

23/01/2024

Particulate emissions from shipping in ports (drone with sensors)

http://www.eng.cam.ac.uk/news/monitoring-maritime-emissions-land-and-seausing-drones-and-handheld-particle-sensors

Haugen et al 2022: <u>10.1016/j.atmosenv.2022.119384</u>

23/01/2024

Multi-parameter PM emissions monitoring

23/01/2024

- AethLab AE51 for black carbon/mass (ng/m³)
- TSI P-traks for particle number (PN/cm³)
- Naneos Partector 2 for lung-deposited surface area (µm²/cm³)
- Probe sampling from outside downwash

AMBRIDGE

Area, number, mass evolve differently as plume mixes. Important input in AQM. Vertical distribution of pollutants: important for residents of high-rise buildings.

Haugen et al 2022: <u>10.1016/j.atmosenv.2022.119384</u>

Drone sensing for methanol bunkering

CARES LinkedIn post: <u>https://www.linkedin.com/posts/cambridge-centre-for-advanced-research-and-education-in-singapore-cares-cares-drone-at-mpa-methanol-bunkering-operation-ugcPost-7092334900187451392-VIcM?utm_source=share&utm_medium=member_desktop</u>

High-res movie: <u>https://www.dropbox.com/scl/fi/pj69hu76zyrqtaaoxhh07/Highlight-reel-</u> <u>for-external-use_high-quality.mp4?rlkey=yhrs2uat8ml8ky6fbo227xkdc&dl=0</u>

World's first ship-to-containership methanol bunkering; CARES drone with CH3OH sensor to detect leaks. (Raffles Anchorage, 27 July 2023)

23/01/2024

Ship-scale CFD for plume dispersion

• CFD of plume dispersion at various wind directions: used to explore quick near-field transformations and the validity of standard practices used by regulators.

23/01/2024

CFD for NH₃ leak dispersion during ship-to-ship bunkering

• CFD of NH₃ dispersion from connecting pipe: used to explore physical range where concentrations are dangerous.

Future steps:

Continue researching the production and combustion of biofuels, SAFs, H_2 , NH_3 , CH_3OH .

Continue thinking of ways to integrate waste heat and cryogenic systems.

Continue thinking of "where the pollutant goes" in the atmosphere – important for policy-making, H&S, penetration of zero-C fuels etc.

Develop a direct dialogue with policy-makers, regulators, propulsion and power generation system manufacturers: the standard innovation pathway is too slow for the rate of CO_2 reduction we need.

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

Activities on shipping are funded by the National Research Foundation (NRF),

Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.

At Cambridge, funding on H₂ and NH₃ provided by the **EPSRC**, **EU Clean Aviation Joint Initiative & UK Aerothermal Technology Institute** (project "FlyZero")

