Solutions for shipping to meet IMO 2050

Dec-01, 2023

Giosuè Vezzuto Executive Vice President, Marine

Outcome of MEPC80 : new strategy

- The revised strategy increases the level of ambition. The new target is a net zero emission state, *close* to 2050 (*which cannot be interpreted in a single manner, although it is subject to revision in 2028*)
- The reduction of carbon intensity by 40% in 2030, remains as before
- In order to verify the progress of reduction, two check points have been introduced, in 2030 and 2040. These checkpoints do not address carbon intensity, but total emissions. The target is that, compared to 2008, in 2030 to have a reduction of GHG emissions by 20% and in 2040 by 70%, although striving for 30% and 80% respectively.
- As already known, the CII is subject for review in 2026, and there is no doubt that the reduction factor Z will decrease more sharply in order to arrive us at net zero close to 2050.

Meeting the IMO target for GHG reduction

Outcome of MEPC80 : the view on fuels

Guidelines for the Life Cycle Assessment (LCA) of a fuel were adopted.

This is very important in regards <u>ammonia and methanol</u>. Very rightly IMO wishes that the decarbonization of shipping does not shift emissions to other sectors. Seen under the light of LCA, the <u>grey</u> ammonia and methanol will increase sharply the GHG emissions of a ship, because their production is linked with huge emissions of GHG.

Only blue and green ammonia and methanol can be considered for use, which makes their availability and cost much more challenging for shipping.

The use of <u>biofuels</u> will fall under critical observation

Only fuels, certified by international bodies, which succeed a **well-to-wake reduction** of GHG of 65% compared to Marine Gas Oil, can be considered as biofuels, and be assigned a reduced carbon emission factor. In all other cases, they will have the emission factor of the corresponding fossil fuel. In this regard, the list of possible biofuels that can be used becomes short, with limited availability and very expensive. Also bio-gas cannot be considered as carbon negative.

The case of Bio-fuels

	Bio-Fuel Generations					
	1st	2nd	3rd	4th		
Feedstock	Vegetable Oils found in food crops	Agricultural Non-food crop feedstocks, and forest residues	Specially energy source such as algae	Genetically modified (GM) algae to enhance biofuel production		
Production Method	Fermentation, Transesterification (FAME), Hydrotreating (HVO)	Fischer Tropsch	Fischer Tropsch			
Common Types	FAME, HVO	FT Diesel				

Emissions reduction potential depends on feedstock, production method and supply chain.

Biofuel must be accompanied with certification issued by ISCC or a similarly approved auditing body (RSB).

Bio fuels have short "shelf-life" due to very low oxidation stability

The effect of Bio-fuels in combustion & emissions :

Advance of injection timing Modification of ignition timing due to lower LCV Shorter Ignition delay due to higher CN Effect (+ / -) on NOx emissions : this varies , <u>less NOx usually come at cost for SFOC</u> Reduce visible smoke & PM Reduced CO and HC emissions

Not enough green energy for green fuels

Annual production of Green energy

Energy for production of green ammonia Green Ammonia for shipping Green Energy for ammonia for shipping

Power-to-methanol conversion efficiency Energy content of Methanol Green Methanol for shipping Green Energy for methanol for shipping

8,300 TWh⁽¹⁾

38.2	GJ/MT NH3 ⁽²⁾
661	Million MT
7,015	TWh

48.2% ⁽³⁾
23.0 GJ/MT
618 Million MT
8,191 TWh

Sources:

- 1. https://www.iea.org/reports/global-energy-review-2021/renewables
- 2. https://pubs.rsc.org/en/content/articlelanding/2020/ee/c9ee02873k
- 3. file:///C:/Users/atr01/Downloads/energies-13-03113-v2.pdf

Fuel management on board

	Fuel Oil	LNG	Methanol	Ammonia
Energy content (MJ/kg)	41	50	19.9	18.6
Density (MT/m ³)	0.96	0.45	0.792	0.73

Mass	Ref	-19%	+206%	+220%
Volume	Ref	+73%	+250%	+290%
CO2 emissions	Ref	-25%	-9%	N/A
With CH4 slip		-15%		

- Extra mass will have impact on DWT
- Standard arrangement of fuel Tks needs to change

Fuel Price .vs. Fuel Availability

Reduced fuel availability yields skyrocketing prices

Fuel cost is > 60% of total ship operating costs

Hydrogen is dream fuel

BENEFITS	CHALLENGES
No SOx, PM, CO2 emissions	 Very small production globally No distribution & bunker infrastructure Very low energy density (1/2.5 of LNG), very big tank Great energy loss for liquefaction Liquid phase temperature interval is only 13oC; Insulation of LH2 tanks is critical Material challenges, at very low cryogenic temperatures Little storage time, not very suitable for long voyages

We cannot realistically anticipate that we can solve the problems around production, transportation, delivery and storage of hydrogen.

Steam Methane Reforming

to produce and supply/distribute a new fuel

Fuel Cells

Imperial College London

- Mature Technology
- Very high power density
- Only water vapor as emission
- Rapid response to load changes

HYDROGEN POWERED

The benefits of Hydrogen+methane

With Tuning

Onboard Hydrogen Generators

Hydrogen as fuel Safe fuel/less hazard, when

• The risk of hydrogen explosion is minimal

- Although hydrogen can burn in low concentrations, an explosion of hydrogen is very difficult to occur
- It blazes with little heat radiation, therefore only things immediately next to the flame would burn

COP27 : Solutions for carbon intensive industries

Cement, iron and steel, and chemicals / petrochemicals industries are the most significant industrial CO2 emitters, accounting for about 25% of total CO2 emissions globally and 66% of the industrial sector.

Their decarbonization of these industries is a top priority

The solutions presented fall into two categories:

- <u>Technology-based solutions</u>: carbon capture utilization and storage (CCUS); hydrogen; industrial energy efficiency; nuclear power and heat; electrification coupled with increased renewables
- Concept-based solutions : Circular Carbon Economy (CCE) and Industrial Clusters approach

It is reasonable that shipping shares solution with other industries (CCUS)

IEA. Licence: CC BY 4.0

Reformer .vs. Post combustion capture

	Post-	Pre-
Due e e e e	Chamical	Dhuning
Process	Chemical	Physical
Hazardous Materials	0	\bigcirc
Purity of CO2	0	Ø
CO2 concentration	0	\bigcirc
Flow rate	0	Ø
Extra logistics & purchasing	0	Ø
Scalable	0	
Energy consumption	0	Ø
Space required	0	Ø
Sensitive to vibrations	0	Ø
Sensitive to impurities	0	

- The removal of CO2 from reformed gases is a physical process and does not involve or require the use of chemicals
- Due to its very complex nature (heat & mass transfer process sensitive to hydromechanic and thermodynamic factors), the post combustion is very sensitive to vibrations and it is highly unlikely that it will perform on bord a ship
- The post combustion is very sensitive to impurities (NOx, SOx, PM) : their presence will rapidly degrade the chemical solvent, while their removal needs higher standards that catalysts and scrubbers

Validation of concept from Cambridge

On-board partial LNG reforming: overall efficiency vs CO2 removal

Better overall efficiency than post-engine CO2 capture.

Advantages:

- Efficiency: Allows Waste Heat Recovery, hence overall efficiency improved.
- H&S: Higher CO2 concentrations than Post-combustion CCS makes PSA possible; no amine issues.
- H&S: No on-board H2 storage; physical H2 path from production to consumption very short.
- Financial: On-board SMR+PSA Pre-combustion CCS probably less bulky than Post-combustion Amine CCS; no large LH2 boil-off; likely to have smaller cargo loss compared to LH2 option.
- Gradual decarbonization: if engine can use variable LNG+H2 mixtures, IMO trajectory can be met progressively; easier for shipowners to invest (less risk).
- Methane slip: likely to be improved (even small amounts of H2 can have drastic effect on CH4 slip)

The case of Suezmax tanker

41% reduction of EEDI IMO2030 compliant !

OUTLINE SPECIFICATION

FOR

156,000DWT CRUDE OIL TANKER (MEGI LNG DUAL FUEL)

REF NO. : TK-2059-OS-Rev.I1

BUILDER: NEW TIMES SHIPBUILDING CO., LTD

December 2020

The development of CII

Depending on : operating speed & accepted rate of CII

different options are available to Owner for compliance

@ 12 kn	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046
LNG	A	А	А	В	В	В	В	В	С	С	С	С	D	D	D	D	E	E	Е	E	E	Е
10% H2	А	Α	А	А	А	А	А	В	В	В	В	С	С	С	D	D	D	D	E	E	E	E
30% H2	А	А	A	А	А	А	А	А	А	А	А	А	В	В	В	С	С	С	D	D	D	E
60% H2	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	В	В	С
@ 11 kn	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046
LNG	А	А	А	А	А	А	В	В	В	В	С	С	С	С	D	D	D	D	E	Е	E	E
10% H2	А	Α	А	А	А	А	А	А	А	А	В	В	В	С	С	С	D	D	D	D	Е	E
30% H2	А	А	А	А	А	А	А	А	А	А	А	А	А	А	В	В	В	С	С	С	D	D
60% H2	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	В	В
@ 12 kn	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046
LNG	Α	Α	Α	В	В	В	В	В	С	С	С	С	D	D	D	D	E	E	E	E	E	E
10% H2	A	Α	Α	Α	Α	А	А	В	В	В	В	С	С	С	D	D	D	D	Е	Е	Е	E
30% H2	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В	С	С	С	D	D	D	Е
60% H2	А	Α	Α	Α	Α	А	А	Α	А	Α	Α	А	Α	Α	Α	Α	А	Α	Α	В	В	С

The cost for CO2 reduction

Proposal accepted by major Greek Owner

Angelicoussis Group advances first bulk carrier design to exceed IMO 2050

Dual-fuel, LNG/hydrogen, newcastlemax is being developed in conjunction with Rina and Shanghai Design & Research Institute

18 Nov 2022 | NEWS

Maria Angelicoussis is CEO of the Angelicoussis Group. Photo: FT

Angelicoussis Group developing bulker that produces hydrogen on board

Greek owner's Maran Dry Management teaming with Rina and SDARI for innovative dual-fuel newcastlemax

European Regulations

Fit for 55 (All ships > 5,000 GT)

Pay the cost for :

100% of the GHG emissions within EU ports and from voyages between EU ports 50% of the GHG emissions from voyages to or from EU ports

Emissions to be considered : CO_2 from 1 January 2024 Methane (CH₄) and nitrous oxide (N₂O) from 1 January 2026

Phase-in: 40% of the verified aggregated emissions reported for 2024;
70% of the verified aggregated emissions reported for 2025;
100% of verified aggregated emissions reported for 2026 and each year thereafter

➢ Fuel EU (All ships > 5,000 GT)

The yearly average GHG intensity of the energy used on-board by a ship shall not exceed the reference value, which is reduced by an increasing % from 2% in 2025 up to 80% in 2050

Implications by EU regulations

EU allowance	ANNUAL			EMISSIONS COVERED BY ETS						
100 EUR/MT	Consumption	CO2 emissions	25%	50%	75%	100%				
FUEL OIL	9,305	28,976	724,394	1,448,789	2,173,183	2,897,577				
LNG	7,777	25,847	646,175	1,292,350	1,938,525	2,584,700				
30% H2	9,040	20,271	506,775	1,013,550	1,520,325	2,027,100				

COST BENEFIT	LNG	782,193	1,564,385	2,346,578	3,128,770
OVER 10 YEARS	30% H2	2,176,193	4,352,385	6,528,578	8,704,770

TOTAL

EU allowance	AN	ANNUAL EMISSIONS COVERED BY ETS					
150 EUR/MT	Consumption	CO2 emissions	25%	50%	75%	100%	
FUEL OIL	9,305	28,976	1,086,591	2,173,183	3,259,774	4,346,366	
LNG	7,777	25,847	969,263	1,938,525	2,907,788	3,877,050	
30% H2	9,040	20,271	760,163	1,520,325	2,280,488	3,040,650	
COST B	ENEFIT	LNG	1,173,289	2,346,578	3,519,866	4,693,155	
OVER 10 YEARS		30% H2	3,264,289	6,528,578	9,792,866	13,057,155	

Aside from cost benefit of ETS, and regardless who will pay this (Owner or Charterer), As pr FuelEU, the need to reduce the carbon intensity of energy consumed on board , **REMAINS**

AVERAGE

1,955,481 5,440,481

7,395,963

AVERAGE 2,933,222 8,160,722 11,093,944

Thank you for your attention

Giosuè Vezzuto Executive Vice President, Marine

